Links zu weiteren Portalen

Seiteninterne Suche

Impact of the Jenkyns Event (early Toarcian) on dinosaurs

“The Early Jurassic Jenkyns Event (~183 Ma) was characterized in terrestrial environments by global warming, perturbation of the carbon cycle, enhanced weathering and wildfires. Heating and acid rain on land caused a loss of forests and affected diversity and composition of land plant assemblages and the rest of the trophic web. We suggest that the Jenkyns Event, triggered by the activity of the Karoo-Ferrar Large Igneous Province, was pivotal in remodelling terrestrial ecosystems, including plants and dinosaurs. Macroplant assemblages and palynological data show reductions in diversity and richness of conifers, cycadophytes, ginkgophytes, bennetitaleans, and ferns, and continuation of seasonally dry and warm conditions. Major changes occurred to sauropodomorph dinosaurs, with extinction of diverse basal families formerly called ‘prosauropods’ as well as some basal sauropods, and diversification of the derived Eusauropoda in the Toarcian in South America, Africa, and Asia, and wider diversification of new families, including Mamenchisauridae, Cetiosauridae and Neosauropoda (Dicraeosauridae and Macronaria) in the Middle Jurassic, showing massive increase in size and diversification of feeding modes. Ornithischian dinosaurs show patchy records; some heterodontosaurids and scelidosaurids disappeared, and major new clades (Stegosauridae, Ankylosauridae, Nodosauridae) emerged soon after the Jenkyns Event, in the Bajocian and Bathonian worldwide. Among theropod dinosaurs, Coelophysidae and Dilophosauridae died out during the Jenkyns Event and a diversification of theropods (Megalosauroidea, Allosauroidea, Tyrannosauroidea) occurred after this event with substantial increases in size. We suggest then that the Jenkyns Event terrestrial crisis was marked especially by floral changes and origins of major new sauropodomorph and theropod clades, characterized by increasing body size. Comparison with the end Triassic Mass Extinction helps to understand the incidence of climatic changes driven by activity of large igneous provinces on land ecosystems and their great impacts on early dinosaur evolution.” –> Earth Science Reviews